\qquad Hour \qquad

1. You throw a tennis ball vertic ally upward a nd it retums to your hand at the same height 6.0 sec onds later.
a. For how many sec onds did the ball fall a fter reaching its high point? \qquad (Think a bout it. Your guess is probably right!)
b. How high did the ball go? Solve this on the way down INSTEAD of on the way up...easier and same distance! (44 m or -44 m depending on direction)

2. You are driving at 55.1 miles per hour, a nd suddenly you see a deer in front of you. You apply the brakes at a constant rate and bring your carto rest in 21.4 seconds.
a. What is the acceleration? (A negative acceleration is the same as a deceleration.)(-1.15 m/s²)
b. How far (Δx) did you travel while you decelerated? (ans. 263 m)
3. A bullet is shot from rest a nd leaves the muzzle of the gun at a speed of $410 \mathrm{~m} / \mathrm{s}$. The length of the gun barrel is 0.50 m . (that's Δx) How long (Δt) was the bullet in the gun's ba rrel after it was fired? (ans. 0.0024 sec. Hint: This is a 2-step problem bec a use it is not moving at constant speed. You need to solve for the acceleration first and then use that to get the time.)
\qquad Hour \qquad
4. During a 30-second interval, the speed of a rocket traveling horizontally in outer space rose stea dily from $100 \mathrm{~m} / \mathrm{s}$ to $500 \mathrm{~m} / \mathrm{s}$. How far did the rocket tra vel during this time? ($\approx 9,000 \mathrm{~m}$) HINT: a is NOT-9.8m/ s^{2}, you need to solve it first!
5. An electron was uniformly accelerated from rest to a speed of $2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a horizontal particle accelerator.
a. If the electron tra veled 0.10 m while being a ccelerated, what was its a cceleration? $\left(2.0 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}\right)$
b. How long did it ta ke to atta in its final speed? Solve this part using two different equations. Make sure you get the same a nswer for each. ($1.0 \times 10^{-8} \mathrm{sec}$.)

Equation 1:

Equation 2:

6.

> a. A bullet is shot vertic a lly upwards at an initial velocity of 908 miles per hour. Neglecting a ir resistance, how long does it take before the bullet stops rising? $(41.4 \mathrm{sec})$
b. How high does the bullet go during this time? (ans. approximately $8,410 \mathrm{~m}$ or 8,410 m depending on how you look at the problem, It is either going up through that distance or falling down that dista nce-either answer is correct.)

